Search results for "Conformal map"

showing 10 items of 125 documents

Global Lp -integrability of the derivative of a quasiconformal mapping

1988

Let f be a quasiconformal mapping of an open bounded set U in Rn into Rn . Then f′ belongs to Lp(U) for some p > n provided that f satisfies (a) U is a uniform domain and fU is a John domain or (b) f is quasisymmetric and U satisfies a metric plumpness condition.

010101 applied mathematicsCombinatoricsQuasiconformal mappingBounded set010102 general mathematicsMathematical analysisMetric (mathematics)General MedicineDerivative0101 mathematics01 natural sciencesDomain (mathematical analysis)MathematicsComplex Variables, Theory and Application: An International Journal
researchProduct

Enhancement of the Multipactor Threshold Inside Nonrectangular Iris

2018

Multipactor breakdown is studied inside the capacitive iris of a rectangular waveguide with a skewed slot along its longitudinal cross section. Both the iris length and height are assumed to be small compared to the electromagnetic wavelength. Therefore, the quasi-static approximation is applied so as to describe the RF field distribution inside the iris gap, whereas a 2-D model is used to analyze the electron motion. The peculiarities of RF field structure are studied using the conformal mapping approach, which shows that the electric field lines can be approximated by circular arcs when the iris length is much larger than its height. The electron motion inside the iris gap is analyzed usi…

010302 applied physicsPhysicsField linebusiness.industryField effectConformal mapElectron01 natural sciences010305 fluids & plasmasElectronic Optical and Magnetic Materials[SPI.TRON]Engineering Sciences [physics]/ElectronicsCross section (physics)Wavelengthmedicine.anatomical_structureOptics0103 physical sciencesmedicineRadio frequencyElectrical and Electronic EngineeringIris (anatomy)businessComputingMilieux_MISCELLANEOUS
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Integrable models and degenerate horizons in two-dimensional gravity

1999

We analyse an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville fields in conformal gauge. Its general solution represents a pair of ``mirror'' black holes with the same temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the Schwarzschild-de Sitter case. The existence of $\phi=const.$ solutions and their relation with the solution given by the 2D Birkhoff's theorem is then investigated in a more general context. We also point out some interesting features of the semiclassical theory of our model and the similarity with the behaviour of AdS$_2$ black holes.

AstrofísicaHigh Energy Physics - TheoryPhysicsGravitacióNuclear and High Energy PhysicsIntegrable systemCanonical quantizationDegenerate energy levelsFOS: Physical sciencesSemiclassical physicsConformal mapContext (language use)General Relativity and Quantum CosmologyClassical mechanicsde Sitter–Schwarzschild metricHigh Energy Physics - Theory (hep-th)DilatonMathematical physicsPhysical Review D
researchProduct

The initial boundary value problem for free-evolution formulations of General Relativity

2017

We consider the initial boundary value problem for free-evolution formulations of general relativity coupled to a parametrized family of coordinate conditions that includes both the moving puncture and harmonic gauges. We concentrate primarily on boundaries that are geometrically determined by the outermost normal observer to spacelike slices of the foliation. We present high-order-derivative boundary conditions for the gauge, constraint violating and gravitational wave degrees of freedom of the formulation. Second order derivative boundary conditions are presented in terms of the conformal variables used in numerical relativity simulations. Using Kreiss-Agranovich-Metivier theory we demons…

AstrofísicaPhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsGeneral relativityMathematical analysisFOS: Physical sciencesConformal mapGeneral Relativity and Quantum Cosmology (gr-qc)Coordinate conditions01 natural sciencesGeneral Relativity and Quantum CosmologyNonlinear systemNumerical relativityTheory of relativity0103 physical sciencesAstronomiaBoundary value problem010306 general physicsSecond derivative
researchProduct

The stereographic coordinate system

2003

Atmospheresymbols.namesakeClassical mechanicsCoordinate systemDynamics (mechanics)Image scalesymbolsEquations of motionStereographic projectionConformal mapGeometryLagrangianMathematics
researchProduct

Boundary angles, cusps and conformal mappings

1986

Let f be a conformal mapping of a bounded Jordan domain D in the complex plane onto the unit disk . This paper examines the consequences for the local geometry of D near a boundary point z 0 of the mapping f-or, to be more precise, of the homeomorphic extension of this mapping to the closure of D—satisfying a Holder condition at z 0 or, alternatively, of its inverse satisfying a Holder condition at the point f(z 0). In particular, the compatibility of Holder conditions with the presence of cusps in the boundary of D is investigated.

Bounded functionMathematical analysisHölder conditionInverseBoundary (topology)Conformal mapGeometryGeneral MedicineUnit diskComplex planeMathematicsComplex Variables, Theory and Application: An International Journal
researchProduct

Uniformization with infinitesimally metric measures

2019

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

Characterization (mathematics)Space (mathematics)conformal modulus01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsComplex Variables (math.CV)MathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsquasiconformal mappingMetric Geometry (math.MG)metriset avaruudetmetric doubling measureMetric spaceDifferential geometryUniformization theoremMetric (mathematics)quasisymmetric mapping30L10 (Primary) 30C65 28A75 51F99 (Secondary)mittateoria010307 mathematical physicsGeometry and TopologyUniformization (set theory)
researchProduct

Rigidity of quasisymmetric mappings on self-affine carpets

2016

We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.

Class (set theory)Pure mathematicsMathematics::Dynamical SystemsGeneral Mathematicsquasisymmetric mapsMathematics::General TopologyPhysics::OpticsConformal mapRigidity (psychology)01 natural sciencesDimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsself-affine carpetsMathematicsta111010102 general mathematicsPhysics::Classical PhysicsMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation28A80 37F35 30C62 30L10
researchProduct

Generalized John disks

2014

Abstract We establish the basic properties of the class of generalized simply connected John domains.

Class (set theory)conformal mappingGeneral Mathematics30c65Conformal mapTopology30c62AlgebraNumber theorySimply connected spacehyperbolic geodesicQA1-939inner uniform domainjohn domainAlgebra over a fieldGeometry and topologyMathematicsMathematicsOpen Mathematics
researchProduct